Al-Farabi Kazakh National University Faculty of Theoretical and Nuclear Physics Department of Theoretical and Nuclear Physics

EDUCATIONAL-METHODICAL COMPLEX OF DISCIPLINE

FTEVE 7201 «Physics and technics of energy savings and renewable energetics»

Specialty "6D060400 – Physics"
Educational program " on specialty 6D060400 – Physics "

 $\begin{array}{c} Course-1\\ Semester-1\\ Number of credits-3 \end{array}$

Educational-methodical complex of the discipline is made by <u>Takibayev Nurgali</u> Zhabagaevich, d.s.pm., academic of NAS RK, professor (name, surname, scientific degree, academic rank)
Based on the working curriculum on the specialty "6D060400 – Physics"
Considered and recommended at the meeting of the department <u>of Theoretical</u> and Nuclear Physics
from «_05_ »09 2017 year, protocol № 2
Head of department Abishev M.Y. (Signature)
Recommended by methodical bureau of the faculty «06»09 2017 year, protocol № 1
Chairman of the method bureau of the faculty Gabdullina A.T. (Signature)

Al-Farabi Kazakh National University Faculty of Physics and Technology Chair of Theoretical and Nuclear Physics

Syllabus Autumn semester, 2017-2018 academic year

Academic course information

Discipline's	Discipline's	Type	No. of hours per week			Number of	ECTS
code	title	1	Lect.	Pract.	Lab.	credits	
FTEV 7201	Physics and technics of energy savings and renewable energetics	Basic	1	2	0	3	5
Lecturer		Takibayev N.Zh., d.s.pm., academic of NAS RK, professor E-mail: takibayev@gmail.com		nic Office	hours	Scheduled	
e-mail	E-mail: takibaye						
Telephone number	Telephone: 2 0396	925-133;	8-777-704- Auditory		31	319	

Academic	Type of university: (theoretical, practical; basic, elective) and its purpose (role				
presentation of	and place of the course in the educational program): Theoretical Nuclear				
the course	Physics.				
	The purpose of the discipline - to develop to doctoral students in environmental knowledge and the complexity of research related to new directions of energy saving and energy production of ecological orientation. As a result of learning the discipline, the doctoral student is able:				
	1. describe the current scientific and environmental problems, the solution of				
	which is now actual and widely discussed in the international scientific community;				
	2. describe the problems of the development of the Earth's ecosphere; 3. use modern technologies in solving problems on renewable energy; 4. to analyze and discuss the results obtained on energy saving and renewable energy physics and technology; 5. to interpret in practice a set of theoretical principles and practical techniques for the consideration of various tasks on non-traditional and				
	renewable sources.				
Prerequisites	Organization and planning of research				
Post requisites	It is necessary in a future professional practice				
Information	Literature:				
resources 1. Aitken, Donald W. (2010). Transitioning to a Renewa					
	Future, International Solar Energy Society, January, 54 pages.				
	2. Lovins, Amory (2011). Reinventing Fire: Bold Business Solutions for the				
	New Energy Era, Chelsea Green Publishing, 334 pages.				
	3. Makower, Joel, and Ron Pernick and Clint Wilder (2009). Clean Energy				

	100
	Trends 2009, Clean Edge.
	4. HM Treasury (2006). Stern Review on the Economics of Climate Change, 575
	pages.
	5. International Energy Agency (2007). Renewables in global energy supply: An IEA facts sheet, OECD, 34 pages.
	Internet-resources:
	1. REN21 (2008). Renewables 2007 Global Status Report, Paris: REN21
	Secretariat, 51 pages.
	2. REN21 (2009). Renewables Global Status Report: 2009 Update, Paris: REN21 Secretariat.
	3. REN21 (2010). Renewables 2010 Global Status Report, Paris: REN21 Secretariat, 78 pages.
	4. United Nations Environment Programme and New Energy FinanceLtd.
	(2007). Global Trends in Sustainable Energy Investment 2007: Analysis of Trends and Issues in the Financing of Renewable Energy and Energy Efficiency
	in OECD and Developing Countries, 52 pages.
	5. World watch Institute and Center for American Progress (2006). American
	energy: The renewable path to energy security, 40 pages.
Academic	Academic Behavior Rules:
policy of the	Compulsory attendance in the classroom, the impermissibility of late attendance.
course in the	Without advance notice of absence and undue tardiness to the teacher is
context of	estimated at 0 points.
university	Academic values:
moral and	Inadmissibility of plagiarism, forgery, cheating at all stages of the knowledge
ethical values	control, and disrespectful attitude towards teachers. (The code of KazNU Student's honor)
Evaluation and	Criteria-based evaluation:
attestation	Assessment of learning outcomes in correlation with descriptors (verification of
policy	competence formation during midterm control and examinations).
	Summative evaluation:
	evaluation of the presence and activity of the work in the classroom; assessment
	of the assignment, independent work of students, (project / case study / program
	/)

Calendar (schedule) the implementation of the course content:

Wee ks	Topic title (lectures, practical classes, Independent work of students)	Numbe r of	Maximum score
	Module 1	hours	
1	Lecture-1 (L-1). Conventional and non-conventional sources of energy.	2	-
	Seminar -1 (S-1). Efficiency evaluation of conventional sources of energy.	1	5
2	L-2. The main relations of mechanics of liquid and gas. Application of thermodynamics laws.	2	•
	S-2. Estimated calculation of the system of heat transfer.	1	5
3	L-3. Physical bases of the transformation processes of solar energy.	2	
	S-3. Calculation of thermal insulation systems by the method of thermal circuit.	1	5
	DSWT-1. Prepare the report: Processes of solar rays absorption in materials.	1	20

1-4 Physica	principles of geothermal converter of energy.	2	-
S. A. Problem	is on calculation of solar exposition.	1	5
3-4. Problem	Module 2		
I 6 Th	Nodule 2	2	-
L-5. Therma	Il storage of energy. Thermal solar systems for		
gettig a cold	, for heating of the footh and an drying.		
of solar radi	ation for prepearing food and fresh water.	1	5
S-5. Calcula	tion of thermal balance of heat sinks and opened,	• 1	
closed, isola	ted storage devices of thermal energy.	1	20
DSWT-2. F	repare the report: Energetical constituents of	•	
solar radiati	on, evaluation of solar exposition.	2	
L6. Systems	of solar heat supply. Transformation of thermal solar	2	-
energy into n	nechanical and chemical energy. Stirling Engines. Solar		
power station	of tower type and with dispersed collecters.		5
S-6 Calculati	on of solar radiation collecter.	1	
I -7 Photoele	ctric properties of p-n junction. Electronic properties of	2	-
semiconducto	r materials. Transformation of thermal solar energy into		
electric energy	with semiconductor converters.		
S-7 Calculati	on of thermoelectronic generators efficiency.	1	5
DOWT 3 De	epare the report: Physical properties and characteristics of	1	25
semicunducto			
1-4 Y-4 auror	diate Control (IC1)		100
			100
Midterm (N	actons and materials of solar elements.	2	•
L-8. Constru	tion of electric circuits of solar radiation	1	5
photovoltaic		-	
photovoltaic	Module 3		
I O Desig	principles of cistern using and examples of	2	-
	ystems with their using.	-	
energetical s	tion of thermal mode of solar module when the	1	5
S-9. Calcula	horizontal and vertical position of module.	•	
module is in	repare the report: Using of cistern and wind	1	10
	epare the report. Osing of cistern and wind	1	10
energy.	energy and opportunities of its using. Problems	2	_
	getic in Kazakhstan. Production of wind energy,	-	
	of wind turbine.		
	oles of energetic systems using cistern.	1	5
	y of ideal wind turbine. Principles of work and	2	
		2	•
of frontal re	of vertical and orthogonal wind turbines, turbines		
	oles of energetic systems using cistern.		
		1	5
	epare the report: Transformation of thermal	1	10
solar energy	into electrical energy.		
	ations, using wind and rush energy. Examples of	2	
	ations of various type.		
	les of energetic systems using wind and rush	1	5
energy.			11
	oles of energetic devices based on	2	
	sis and biofuels, exotic transformations of solar		
energy.			
S-13. Calcul	ated examples of energetic systems using	1	5
devices base	d on photosynthesis and biofuels.		
			LANCE OF RESIDEN
			diam'r.

	DSWT-6. Prepare the report: Direct conversion of thermal energy.	1	20
14	L-14. Thermal mode of Earth's crust. Sources of geothermal heat.	2	•
	S-14. Calculated examples of energetic systems using thermal energy of ocean.	1	5
15	L-15. Energy storage. Chemical and biological storage. storage of heat and electroenergy, fuel elements and mechanical storage.	2	•
	S-15. The calculation of the distribution chain and storage of renewable energy sources.	1	5
	DSWT-7. Prepare the report: Classification of heat accumulator.	1	25
	2nd Intermediate Control (IC2)		100
	Exam		100
	Total		100

Note: Independent work of students with teacher is 7 hours for semester. 3, 5, 7, 9, 11, 13 and 15 weeks are included into syllabus (assignment submission) Takibayev N.Zh.
Abishev M.E.
Gabdullina A.T. Lecturer_

Head of the Department

Chairman of the Faculty Methodical Bureau